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We argue that educational practice in mathematics is not as 
long lasting as is sometimes claimed. It is intimately related 
to prevalent social representations of what is ‘useful knowl-
edge’, that is, what decision-makers and teachers consider to 
be knowledge and skills necessary for all students. Basic 
arithmetic and geometry, which until the sixties were neces-
sary in commercial life, as practical methods for solving 
problems, drawing figures and computing, cease to be indis-
pensable in education from the moment that calculators and 
computers ‘perform’ arithmetic operations and ‘draw’ geo-
metrical figures.  

In recent decades, the educational direction of the leading 
technocratic elite in USA and the European Union turned 
toward hybrid knowledge and skills in order to train future 
citizens to adapt to technological developments and socio-
economic changes. For example, students should be able to 
recognize structured data in a pictorial form (e.g., circular 
diagrams or graphs). At the same time, there is an interna-
tional shift towards ‘practical’ mathematical problems 
related to the workplace [1] and educational activities that 
incorporate preexisting technological tools in teaching [2]. 
Both of these turns seem to be aspects of a single, wide-
spread change of direction in international educational 
policy. 

Part of this change is an increased emphasis on modeling 
and simulation of ‘real’ activities. As Harouni (2015, p. 62) 
points out, the actual commercial-administrative content of 
school mathematics was not made visible to teachers and 
students until recently. The shift to ‘real’ problems makes 
the role of mathematics in an uncertain capitalist world more 
clear. We consider this instrumental adaptation of mathemat-
ical knowledge, in a procedural/algorithmic form suitable 
for a virtual introduction of students to labor or marketing 
activities, to be  demathematization (Keitel, 1989; Gellert & 
Jablonka, 2009), a new technological form of commercial-
administrative type of mathematics education. 

The aim of this communication is to discuss these changes 
in parallel with the practice of school algebra and to present 
some cognitive consequences, revealed by a test given to 
Greek students. 

The demathematization effect of informa-
tional technology and school algebra 
The international shift in the design of new teaching activi-
ties, which incorporates calculators and pre-existing 
educational software, means that geometrical constructions 
as well as representation of three-dimensional space are no 
longer left to human perception and performance, shifting 
instead to computer processing.   

The phenomenon of demathematization by technology 
(Gellert & Jablonka, 2009) is a replacement of thinking and 
mathematizing processes by technological ‘black boxes’, 
i.e., programs that simulate mathematical constructions and 
thus do not requirethier users to understand their underlying 
mathematical structures. Christine Keitel, as early as in 
1989, had already observed that, “the hand-calculator is the 
culmination so far of a development by which, while reality 
is being structured more and more by mathematics, the aver-
age individual is more and more relieved of the need to use 
mathematics” (p. 9). She adds, “Demathematisation is 
brought about by the very existence of the products of our 
technologically-structured environment: demathematisation 
is inherent in these products as it is in technology” (p. 9).  

In parallel to these developments, school algebra—in con-
trast to basic arithmetic—offers a kind of instrumental 
adaptation of mathematical knowledge similar to that of 
informational technology. For example, this is evident in the 
following word problem, extracted from the official text-
book of the third year of the Greek Junior High School:  

Trousers cost from 30€ to 35€ and a T-shirt costs from 
20€ to 25€. If someone wants to buy 2 trousers and 3 
T-shirts, determine the maximum and minimum of the 
amount he has to pay. 

The solution expected goes in the following lines: Let x be 
the price of trousers and y the price of T-shirts. Then 30 < x< 35 
and 20 < y < 25. Then for the price of two trousers we have 
60 < 2x < 70 and for the price of three T-shirts 60 < 3y< 75. 
Adding the two inequalities we obtain 120 < 2x+3y < 145, so 
we have to pay between 120€ to 145€. Blindly following 
memorized rules of algebra to solve such a problem is 
another kind of demathematization.  

Technology need not demathematize. Under special peda-
gogical conditions, some mathematics educational software 
could contribute to heuristics, exploration and visualization 
as well as to mathematical experimentation (Hanna, 2000) 
and testing conjectures, thus revealing a creative aspect of 
information technology. Especially Logo (Papert, 1980) and 
dynamic geometry environments could encourage students to 
‘play’ with data and the questions asked, to explore and expe-
rience mathematics. Thus, the traditional sequence of algebra 
textbooks (axioms & definitions ⟶ theorems ⟶ exercises) 
could be replaced by searching, conjecturing, formulating, 
and proving or refuting.  

 
A diagnostic test and its results 
Greek students are exposed to instrumental procedures in 
school algebra as well as to the effect of demathematization 
by technology (as described above). Hence, we decided to 
pose the following problem to first-year mathematics stu-
dents at the Universities of Patras and Thessaly. 
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A box has a shape of rectangular parallelepiped, with 
integer numbers m, n, k as its sides. We want to fill the 
box, without leaving spaces, with equal cubes using the 
least possible number. How many cubes will we need? 

We gave the same problem to junior and senior high 
school students in a semi-urban area of Greece in the follow-
ing form: 

A box has a rectangular parallelepiped shape, with 
dimensions 6dm, 9dm and 15dm. We want to fill (with-
out leaving spaces) the box with equal cubes, using the 
least possible number. 

i. How long should the edge of each cube be? 

ii. How many cubes will fill the box? 

These problems were posed as a diagnostic test. Would 
the students face the problem by combining their arithmeti-
cal and geometric knowledge? Would they represent the 
problem with a geometrical figure? What would be their  
difficulties? 

Most university students thought that the number of cubes 
required is the least common multiple of the numbers m, n, 
k, perhaps because we asked for ‘the least possible number’ 
of cubes in the problem. Many students calculated the LCM 
of the numbers m, n, k as their product. Some students even 
replied that the least possible number of cubes would be two, 
because we can cut the parallelepiped at the middle in two 
equal parts. 

Many high school students confused volume with area. For 
example, they drew a rectangle and tried to fill it with squares. 
A possible reason for this behavior is that geometry in Greek 
high schools covers only plane figures and not solids. 

Dimitris, a senior high school student, showed a detach-
ment from the meaning of the problem. He wrote:  

The volume of the parallelepiped is Vpar = 6·9·15 = 810. 
If x stands for the edge of each cube and y for the num-
ber of cubes requested, then the volume of the cube will 
be Vcube = x3. Therefore Vpar/Vcube = 810/x3 = y. Also the 
area [presumably of a particular side] of the paral-
lelepiped is Epar = 15·6 = 90, and the area [of a side] of 
the cube is Ecube = x2, hence Epar/Ecube = 90/x2 = y.  

Solving the system of the two equations he found led Dim-
itris to the conclusion x = 9 and y = 9 + 1⁄9 (a fractional 
number of cubes?). 

In contrast to the responses above, there was one student 
in the first year of junior high school who answered the 
question by understanding the algorithms used. He wrote, 
“Each side would be divided with the greatest common divi-
sor of 6, 9 and 15, that is 3” and he continued, “The result of 
the previous calculation is the denominator, in every fraction 
with the numerator being one of the three sides. So we have 
(6⁄3)·(9⁄3)·(15⁄3) = 2·3·5 = 30 cubes.” 

 
Some concluding remarks and suggestions 
According to the test, students found it difficult to work in 
three dimensions. Either they were unable to make the figure 
(which would have given them a useful representation) or 
they completely ignored the third dimension. This reminds 
us of the ‘six-matches problem’ (Murray & Byrne, 2013), in 

which the assumtion that one must solve the problem in two 
dimensions makes it impossible. These students’ reactions 
are more or less expected since three-dimensional geometri-
cal activities are generally missing from Greek school 
mathematics. 

Some students, in our test, were led to an arbitrary alge-
braic reformulation of the problem and subsequently to the 
loss of meaning of mathematical concepts involved. Other 
results apparent in students’ responses are the inability to 
understand a problem that combines geometry with arith-
metic, and their difficulty in connecting the data of the 
problem with appropriate concepts and procedures. These 
difficulties stem from two different hypothetical aspects of 
such problems. On the one hand, they are considered as prob-
lems of arithmetic, whereby key roles are reserved for basic 
operations, such as finding the greatest common divisor and 
least common multiple. On the other hand, there is a struc-
tured system, algebra, for operating on these problems with 
variables and formal mathematical expressions. This creates 
confusion among the students due to their inability to under-
stand symbolic procedures and apply them to concrete data. 

We neither support rote or formal learning of arithmetic 
and geometry, nor the replacement of it with ‘black box’ 
technology. On the contrary, we believe that information 
technology can support the learning process by leading stu-
dents to conjectures and counter-examples, under some 
conditions. In this direction we suggest that attention has to 
be paid at the following points: 

a) Information technology should not be a substitute 
for human acts of mental calculation and geometric 
construction. 

b) Information technology should not be a substitute 
for students’ experience in three-dimensional 
space. 

c) Users of technological applications (both learners 
and teachers) should understand mathematical 
structures (in our case arithmetic operations and 
relationships or geometric transformations) and the 
conditions under which they can be applied. 
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Notes 
[1] See for example the MaSciL project (Mathematics and Science for Life), 
at https://mascil-project.ph-freiburg.de/. 
[2] An example for such an experiment in Greece, as early as in 1990, took 
place with Dr Panayota Tringa, a former assistant in the Department of Sta-
tistics in Athens University of Economics and Business, whose PhD thesis 
focused on the use of computers in teaching basic arithmetical concepts as 
the greatest common divisor. 

 
References 
Gellert, U. & Jablonka, E. (2009) The demathematising effect of technol-

ogy. In Ernest, P., Greer, B. & Sriraman, B. (Eds.) Critical Issues in 
Mathematics Education, pp. 19–24. Charlotte NC: Information Age 
Publishing.  

Hanna, G. (2000) Proof, exploration and experimentation: an overview. 
Educational Studies in Mathematics 44, 5–23. 

Harouni, H. (2015) Toward a political economy of mathematics education. 
Harvard Educational Review 85(1), 50–74. 

38

FLM 41(1) - March 2021.qxp_FLM  2021-01-27  7:51 PM  Page 38



39

Keitel, C. (1989) Mathematics education and technology. For the Learning 
of Mathematics 9(1), 7–13. 

Knuth, D.E. (1997) The Art of Computer Programming (vol. 2). Reading, 
MA: Addison-Wesley. 

Murray, M.A. & Byrne, R.M.J. (2013) Cognitive change in insight problem 
solving: initial model errors and counterexamples. Journal of Cognitive 
Psychology 25(2), 210–219. 

Papert, S. (1980) Mindstorms, Children, Computers and Powerful Ideas. 
New York: Basic Books. 

 
 

Productive struggle in mathematics 

PIERA BICCARD 

The idea of productive struggle may seem self-contradictory 
since the word struggle is not often associated with being 
productive. However, it has been present in mathematics 
education theory for a long time. It can be found in the foun-
dational writings of Piaget, Vygotsky and Dewey, and is 
central to romanticist, progressivist, and authentic-learning 
models of education. Productive struggle has been ‘redis-
covered’ many times and called by many names which can 
conceal some important connections. In this communication 
I explore some of those connections and pull together some 
of the many phrases currently in play that refer to the same 
phenomenon. 

In the field of mathematics education, Hiebert & Grouws 
(2007) proposed that struggle is a necessary condition for 
mathematical sense-making while Betts & Rosenberg 
(2016) go as far as to say that productive struggle is such a 
fundamental aspect of problem solving, that if a learner does 
not struggle, problem solving does not take place. Produc-
tive struggle, therefore, is akin to what it means to do 
mathematics (Warshauer, 2015), and the result is having 
more powerful, useful and flexible ways of making sense of 
mathematics. Often terms such as “controlled floundering” 
(Pogrow in Sullivan et al., 2015, p. 20) or a “zone of confu-
sion” (Livy, Muir & Sullivan, 2018, p. 21) are also used to 
describe productive struggle. Pauli (1960) suggests that a 
common feature in all authentic problem-solving situations 
is initial confusion that gives rise to understanding as the 
learner works through the problem. What is not desirable in 
mathematics classrooms is unproductive success which is 
the “illusion of learning” when learners follow drilled proce-
dures or rote calculations (Kapur, 2016, p. 290) to achieve 
‘correct’ answers without a real understanding of the con-
cepts involved. A teacher providing excessive control and 
scaffolding (i.e., telling and showing every step) typifies 
unproductive success as a notion that is in contrast to pro-
ductive struggle.  

 
Some features of productive struggle 
Sullivan et al. (2015) elaborate some of features of produc-
tive struggle, such as sustained thinking, decision-making 
and risk taking. To keep learners in their “zone of productive 
struggle” (Townsend, Slavitt & McDuffe, 2018, p. 217), four 
more specific and interrelated elements affecting learning 
will be discussed: classroom environments, task features, 
teacher orientations, and learner orientations. 

Classroom environments 

Kapur and Bielaczyc (2012) propose an ‘explore-first-then-
instruct’ process. They provide three essential design 
features for mathematics classrooms. Teachers should pro-
vide complex problems that require multiple representation 
and solution methods; allow for opportunities to explain and 
elaborate; and allow for opportunities to compare and con-
trast the representations and solution methods, not unlike 
some elements of variation theory.  

Warshauer (2015) suggests environments that are non-
judgmental of failed attempts to support learners’ productive 
work. Teachers perpetuate environments that inhibit produc-
tive struggle through teacher lust (Tyminski, 2010) which is 
the desire to tell or show learners exactly what to do, typi-
cally through a path-smoothing model (Wigley, 1992) that 
helps learners avoid time-consuming struggles (Granberg, 
2016). The classroom environment should be one in which 
mistakes are expected and valued for their learning potential. 

Tasks 

Productive struggle can be fostered through engaging with 
challenging tasks (Hiebert & Grouws, 2007; Perkins, 2016; 
Sullivan et al., 2015; Cheeseman, Roche & Walker, 2016). 
Challenging tasks produce anxiety and extensive cognitive 
effort (for both learners and teachers), largely due to the 
“unpredictable nature of the solution process required” 
(Smith & Stein, 1998, p. 348).  

Dewey (1910) understood that teachers have the complex 
undertaking of balancing tasks so that both easy and difficult 
thinking are positioned alongside each other. If the task is 
too easy, there is no need for deep thinking; but, if the task is 
too difficult, it may result in feelings of hopelessness. While 
Bruner’s (1960) principle that tasks should be developmen-
tally appropriate is sound, Kapur (2016, p. 293) suggests the 
following criteria for tasks to enable productive struggle: 

1. The task should challenge the learner to explore, 
but not give up. 

2. It should allow multiple solutions, strategies and 
representations, i.e. allow space for exploration. 

3. It should activate learners’ prior knowledge. 

4. It should allow the teacher to compare and contrast 
different solutions to highlight critical features of 
the concepts at hand. 

Therefore, tasks that elicit productive struggle should be 
carefully designed to be both set in learners’ current ways of 
thinking but also to enable them to extend their thinking 
through challenge. 

Teacher’s role during productive struggle 

The critical role of the teacher in learning mathematics is 
well established (Muijs & Reynolds, 2002). Although the 
teacher is the key to providing challenge and motivation that 
learners need to learn (Winstanley, 2010), teachers do need 
specific guidance in providing and sustaining challenge. 

Brousseau (1997) calls for an “adidactical situation” (p. 30) 
in which the teacher should devolve problems to the learner 
and the learner should accept responsibility for solving 
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them, knowing that they have been selected by the teacher 
for learning. The teacher should not interfere with the learn-
ing process by providing or suggesting the knowledge that 
the learner should develop through engaging with the prob-
lem. Brousseau explains that part of teaching is to provide 
problems that seem too difficult for the learner. If the teacher 
tells the learner how to solve the problems and provides the 
method or procedure, the learners cannot learn it for them-
selves. Learners have to struggle through solving the 
problem to obtain the knowledge contained in it.  

Schoenfeld et al. (2016) set out that teachers need to 
“position students as sense makers” (p. 2). The learners 
should be wrestling with ideas and solutions and they should 
be doing most of the mathematical work in the classroom. If 
the teacher provides hints, these hints should support pro-
ductive struggle and provide learners with time to think 
things through (Kartal, Popovic, Morrissey & Holifiled, 
2017). For Pauli (1960), an “effective teacher anticipates the 
kind of confusion the learner is capable of overcoming and 
plans his lesson accordingly” (p. 81). Furthermore, the 
teacher needs to create a milieu in the classroom in which 
learners expect to work through struggle.  

Learner orientations for productive struggle  

The link between learner beliefs and mathematics learning has 
been investigated (McDonough & Sullivan, 2014; Op’tEynde, 
De Corte & Verschaffel, 2002). Challenging tasks allow learn-
ers to develop empowering dispositions towards mathematics 
(Muraskwa, 2018). For learners to be engaged with produc-
tive struggle, they need to feel comfortable when sharing 
incomplete or incorrect work (Schoenfeld et al. 2016) and not 
to push the teacher for the specific steps to follow (Stein & 
Smith, 1998). They also need to provide explanations of what 
they have done when asking for help and to be specific about 
the assistance they require. They need to believe that learning 
mathematics means being willing to test and re-test ideas. 
Generally, learners’ orientations may compromise their appre-
ciation of productive struggle, for example, they believe that 
they should solve mathematical problems within five minutes 
by following the teacher’s example (Schoenfeld, 1992).  
 
Conclusion  
Productive struggle does not mean frustration or utter confu-
sion, but rather that learners are engaged, curious and 
motivated to pursue the learning that a challenging, well-
chosen task holds. The most challenging aspect of design for 
productive struggle in mathematics classrooms may not be 
task selection, but rather shifting teacher and learner orienta-
tions towards learning through struggle. Classroom norms 
and the distribution of the mathematical work in classrooms 
must enable productive struggle. Demanding tasks should be 
accompanied by “room and support for growth” (Schoenfeld 
et al., 2016, p. 5) so that learners build on their current 
knowledge without always relying on recipe-like solutions. 

Confusion should be seen as “the catalytic agent that gen-
erates the problem-solving process” and the thinking 
required to solve the problem as “the solvent” (Pauli, 1960, 
p. 82). Productive struggle leads to deeper learning (Kartal 
et al., 2017; Kapur, 2016) and more powerful sense-making 

systems (Lesh et al., 2013, p.57), even if it makes success 
difficult in the short term (Kapur, 2016).  
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Equivalence and substitution: 
tools for teaching meaningful 
mathematics  

SU LIANG 

In issue 40(2) Melhuish and Czocher (2020) raise a very 
interesting discussion about the essential role of recognizing 
mathematical objects’ sameness in mathematical teaching 
and learning. One example they give of a situation where 
ideas of sameness are important is recognizing ‘expression 
sameness’ in solving algebraic equations. Here I would like 
to consider sameness in a related context, equivalence and 
substitution across mathematical topics and grade levels. I 
have observed that the preservice teachers that I work with 
do not recognize the sameness and variation of mathematical 
expressions and ideas. I suggest some ways to address this.  

Equivalence and substitution are cases of what Tall (2011) 
calls a ‘crystalline concept’. A crystalline mathematical con-
cept can be expressed in different forms by an equivalence 
of relationships in different contexts and at different learning 
stages. Tall emphasizes the importance of having mathemat-
ics learners “seek a broader understanding of the crystalline 
structures of mathematics” (p. 8). For students to seek such 
an understanding, they must be presented with suitable 
tasks, and to develop such task teachers must also have an 
understanding of the crystalline structures of mathematics. 
As teacher educators, we must equip our prospective teach-
ers with crystalline structures which help them gain a broad 
vision of connected mathematics.  

 
Equivalence and substitution across grade 
levels 
Equivalence and substitution are often used to solve mathe-
matical problems from primary level to college level. To 
name a few examples:  

1. In arithmetic, we use equivalent fractions to add or 
subtract fractions without same denominators: 

In this operation,  

therefore we can substitute 4⁄12 for 2⁄3, substitute 6⁄12 
for 1⁄2, substitute 9⁄12 for 3⁄4, because they are equiv-
alent fractions. We write the answer as 17⁄12 which 

is equivalent to improper fraction 19⁄12. Arithmetic 
problems are often solved using the ideas of equiv-
alence and substitution.  

2. In algebra, substitution is an important technique to 
solve systems of equations. Substitution can also be 
seen in the idea of using variables to represent 
numbers. Equivalent forms are very useful for solv-
ing various algebraic equations. For example,  

Equivalent forms are powerful tools that can help 
transform a complicated mathematical equation 
into a form that is simpler to solve.  

3. In geometry, if polygon A is congruent to polygon 
B and polygon B is congruent to polygon C, then 
polygon A is congruent to polygon C. Many geo-
metric proofs use such ideas of equivalence and 
substitution.  

4. In trigonometry, many trigonometric identities can be 
proved using the idea of equivalence and substitution.  

5. In calculus, substitution is a very powerful method 
for finding integrals. Many theorems are proved 
using the idea of equivalence and substitution.  

Wasserman and Weber (2017) proposed that in teacher 
education we should help teachers develop “not just mathe-
matical knowledge but also particular pedagogical 
aptitudes” (p. 18) by helping them understand the connec-
tions between advanced mathematics they learn and the 
secondary teaching contents they will teach. Identifying sit-
uations of equivalence and substitution is such an aptitude. 
Developing it will help the preservice teachers to connect 
previously learned knowledge into a coherent whole and to 
gain a bigger picture of mathematics. We can use equiva-
lence and substitution as a thread to pull different levels of 
mathematical concepts together (see Figure 1).  

41

Figure 1. Equivalence and substitution pulling together 
mathematical concepts.
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Understanding the idea of equivalence and 
substitution 
Here is an open-ended homework question from my cap-
stone courses in recent semesters: 

Please reflect on all mathematics you have learned so 
far. Create a map that demonstrates the big idea of 
Equivalence. Be creative, I want to see some great 
maps from you. 

Most of the preservice teachers responded with some equiv-
alent numbers such as: 

or some equivalent simple algebraic expressions: 

These responses either articulated the relationships among 
mathematical concepts of fractions, decimals, and percent-
age or listed algebraic operations using different algebraic 
rules. However, I had expected that the preservice teachers, 
who had completed Calculus, Geometry, Linear Algebra, 
and Abstract Algebra, would have had a better vision of 
equivalence. There was one response that was closer to what 
I expected (Figure 2). Starting from the the number 1, the 
student listed various equivalent representations including 
numeric operations, position on a number line, fractions, 
algebraic expressions, trigonometric expressions, and 
expression from Calculus.   

Although there are a few careless errors, the response in 
Figure 2 demonstrates how powerful the idea of equivalence 
and substitution is in connecting mathematical ideas and 

concepts across subject areas and grade levels, even starting 
from a value as simple as 1. Being able to recognize such 
equivalent relationships between different forms across top-
ics and grade levels is a sign of high level mathematical 
thinking. I noticed that the student who made this response 
performed much better than the others in my class.  

 
Equivalence and substitution in class activities 
Why did so few of my students make the connections shown 
in Figure 2? What can be done to provide opportunities for 
preservice teachers to to develop broader and deeper under-
standing of equivalence and substitution? I offer a sample 
class activity to illustrate my attempts to do so. The activity 
has four parts: 

Part I: Using two methods to express the repeating 
decimals with fractions:  

0.6666…; 0.7777…; 0.8888…; 0.161616…; 
0.353535… 

Part II: Can you predict the fraction for  

0.5555…; 0.565656…; and 0.123123123…  

without calculation? Explain your reason. 

Part III: Reflect on the two methods we applied, what 
mathematics ideas/concepts are needed to apply these 
two methods?  

Part IV: Homework: Prove that  

(a is a constant not equal to 0 and |r| < 1) 

Figure 2. A rich idea of equivalence.
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Part I requires the preservice teachers to use two methods. 
The first method is the usual one they might have seen in 
school:  

This method involves using the properties of equations to 
generate equivalent equations. It is also a context to discuss 
how equivalence differs from equality. When 1 is subtracted 
from 2 the result is a new equivalent equation, unlike when 
a number is subtracted from an equal number, resulting in 0. 

The second method involves recognizing the equivalence 
of a repeating decimal and a geometric series: 

This makes it possible to apply techniques for finding the 
closed form of a geometric series that my students have 
studied in Calculus II.  

Part II engages the preservice teachers in observing the 
patterns of the results for the decimals with one repeating 
digit, two repeating digits, and three repeating digits and 
then generalizing the conclusions. Doing so they experience 
that the same solution method can be applied to different 
numbers, and that when the number of digits changes there 
is an equivalent method they can apply.  

Part III pushes the preservice teachers to think further 
about:  

1. the connections between decimals and fractions, 
between repeating decimals and rational numbers, 
between expansion of repeating decimals and the 
concept of place value, and between algebraic 
methods; 

2. how the ideas of equivalence and substitution are 
used across different mathematical contexts; 

3 how repeating decimals are related to infinite series 
or more generally how different forms of equiva-
lent mathematical expressions can make different 
techniques available.  

Part IV requires the preservice teachers to deduce the for-
mula for the closed form of a geometric series. Though they 
might remember the formula (which they use in Part II) most 
of my students have forgotten how it is proved. Revisiting 
this proof can help them see how mathematics is developed 
and connected across grade levels and subject areas, and 
specifically in this case, how repeated decimals in school 
mathematics are related to geometric series in university 
level mathematics.  

This class activity extends the dimension of expected 
learning for the preservice teachers either horizontally 
(across different mathematical concepts, ideas and methods) 
or vertically (across school levels). The process of solving 
the problems in the activity and reflecting on their solutions 

provides the preservice teachers opportunities to review key 
mathematical contents, apply the ideas of equivalence and 
substitution, use different mathematical methods, connect 
mathematical concepts across different grade levels and gain 
a vision of interconnected mathematical ideas.  

 
Conclusion  
Exploring mathematical sameness can provide preservice 
teachers with a lens for better understanding while teaching 
(Melhuish & Czocher, 2020). Mathematical equivalence, 
specifically, can be used as a thread to connect mathematical 
concepts and topics. Much remains to be done to analyze the 
nature of equivalence and substitution in different contexts, 
and in developing suitable tasks to provide students (includ-
ing preservice teachers) with opportunities to enrich their 
understandings of these ideas. 
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Linear algebra students’  
conceptions: sets that are 
closed under operations 

CARMIT BENBENISHTY 

My work as a mathematics lecturer and my research study-
ing undergraduate students’ thinking patterns led me to the 
realization that many undergraduate linear algebra students 
tend to, incorrectly, consider many sets to be closed under a 
given operation. This communication aims to shed light on 
this interesting conceptual pattern, to present justifications 
given by linear algebra students that illustrate this concep-
tion, and to offer possible sources for it. 
 
Students’ conception about sets that are 
closed under a certain operation  
Closure is an important concept in linear algebra. Closure of 
a set S under an operation * means that, given two elements a 
and b in S and an element c which is obtained from a and b by 
the operation *, c must also be in S. While learning linear 
algebra, students encounter many sets that are closed under a 
given operation. For example, they learn that the product and 
the sum of any two square matrices of the same order is also 
a square matrix of the same order; in other words, the set of 
square matrices of order n is closed under addition and mul-
tiplication. They also learn that the set of invertible matrices 
of order n is closed under multiplication, meaning that the 
product of two invertible matrices of a given order is an 
invertible matrix of the same order. Thinking about closure 
can be a useful way to approach problems in linear algebra. 

FLM 41(1) - March 2021.qxp_FLM  2021-01-27  7:51 PM  Page 43



44

However, not all sets are closed under all operations, and yet 
many students wrongly assume that they are. 

In my work I have encountered many examples of stu-
dents incorrectly assuming closure, claiming, for example, 
the following: 

• The sum of two irrational numbers is inevitably an 
irrational number. After seeing the counter-exam-
ple √2 + –√2 = 0, students adjust their assumption 
only slightly, assuming that the set of irrationals is 
closed under addition unless the two irrational 
numbers are additive inverses. 

• The sum of any two singular matrices is singular. 

• The sum of two invertible matrices A and B is 
invertible, though some students exclude the case 
where A = –B. 

• If the only solution of each of the homogeneous 
systems Ax = 0 and Bx = 0 is the zero solution, 
then the only solution of the homogeneous system 
(A + B)x = 0 is the zero solution. 

• If each of the homogeneous systems Ax = 0 and  
Bx = 0 has infinitely many solutions, then so does 
the homogeneous system (A + B)x = 0. 

• Given two square matrices A and B satisfying 
det(A), det(B) > 0, then necessarily det(A + B) > 0. 

• The sum and the product of any two real diagonal-
izable matrices of the same order is also 
diagonalizable. A common justification is that the 
sum and the product of two diagonal matrices are 
also diagonal matrices. Another common justifica-
tion is that if P–1AP = D1 and P– 1BP = D2, then 
P–1(A+B)P = D1 + D2 and P– 1(A · B)P = D1 · D2. 

Similar inferences are made regarding the concept of 
eigenvector. Many students who are given the question “Are 
there two square matrices A and B and a vector v such that  
v is an eigenvector of A and B but v is not an eigenvector of 
A + B?” respond that if v is an eigenvector of A and B, then v 
is necessarily an eigenvector of A + B. A repeated justification 
is that the equations Av = cv and Bv = cv imply (A + B)v = cv. 
In addition, many students mistakenly think that, given a 
square matrix A, the sum of two non-eigenvectors cannot be 
an eigenvector of A.  

 
Possible sources for this conception 
One possible source for this conception is the insufficient 
comprehension of the various concepts included in a typical 
linear algebra course. There is a possibility that students’ 
familiarity with each of these concepts is not deep enough, 
and therefore they do not have enough tools to cope with cer-
tain questions about them. This situation may be a 
consequence of the way a linear algebra course is taught, if 
many concepts are covered too quickly without first giving 
them an intuitive basis (Harel, 1989), or if they are introduced 
without significant examples or applications (Carlson, 1993). 

For instance, one of the fundamental mistakes of students 
who argue that the set of real diagonalizable matrices of 
order n is closed under addition and multiplication is their 

disregard of the fact that two diagonalizable matrices are not 
necessarily simultaneously diagonalizable. This may be due 
to insufficient experience with the concept of diagonaliza-
tion of matrices (Carlson, 1993). 

Another possibility is related to the two systems of think-
ing presented by Kahneman (2011). According to 
Kahneman, there are two different ways in which our brains 
form thoughts: “System 1 operates automatically and 
quickly, with little or no effort and no sense of voluntary 
control [while] System 2 allocates attention to the effortful 
mental activities that demand it, including complex compu-
tations” (pp. 20–21). Kahneman outlines the relationship 
between these two systems:  

I describe System 1 as effortlessly originating impres-
sions and feelings that are main sources of the explicit 
beliefs and deliberate choices of System 2.  The auto-
matic operations of System 1 generates surprisingly 
complex patterns of ideas, but only the slower System 
2 can construct thoughts in an orderly series of steps. 
[In some circumstances] System 2 takes over, overrul-
ing the freewheeling impulses and associations of 
System 1.  (p. 21) 

When System 1 runs into difficulty, it calls on System 2 
to support more detailed and specific processing that 
may solve the problem of the moment. System 2 is 
mobilized when a question arises for which System 1 
does not offer an answer [...] System 2 is mobilized to 
increased effort when it detects an error about to be 
made. (pp. 24–25)  

Although System 1 is very good at what it does, it tends to 
have biases and systematic errors in specific circumstances. 
It sometimes responds to easier questions than those it was 
asked and it has little understanding in logic. 

A key difference between students who falsely assume 
that sets are closed, and students who do not, may be a dif-
ferent division of labor between System 1 and System 2. In 
order to justify correctly whether or not a set is closed under 
a given operation, it is necessary to keep in memory several 
concepts in that need to be combined, according to specific 
properties and rules. Kahneman argues that, in this case, 
cognitive effort is required, and System 2 is the only one that 
can be used. In order to avoid the wrong inferences that Sys-
tem 1 may make, attention to System 2 is required. It is 
possible that System 1 is the one responsible for the wrong 
impression that a set is closed under a certain operation and 
that a major disparity between students whose justifications 
are incorrect and those whose justifications are correct, 
stems from attention to System 2. Perhaps, students whose 
justifications are correct attend System 2, and, as a result, 
System 2 operates and overcomes the wrong conclusions of 
System 1, whereas among students whose justifications are 
incorrect, System 2 does not overcome System 1 and it does 
not detect the wrong assumptions made by System 1. 

A third possible source for this conception can be found in 
the theory of the three conceptual worlds outlined by David 
Tall (2004, 2013). The three conceptual worlds of Tall describe 
a hierarchy of three forms of thinking. The embodied world is 
where perception is developed through mental embodiment of 
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mathematical objects using our daily experience. The symbolic 
world is where we operate on the symbolic level, and eventu-
ally we comprehend those operations at such a level that they 
do not require much conscious effort. Finally, the formal world 
is where we use formal reasoning and axiomatic thinking. 
According to Tall, ideally students first develop their under-
standing through embodiment of the underlying mathematical 
objects, they then continue and learn how to symbolize these 
objects and how to operate on them in the symbolic world and 
finally, they learn to formally reason about them. 

Beltrán-Meneu, Murillo-Arcila and Albarracín (2017) use 
Tall’s framework to analyze and classify students’ answers 
to the following question: 

Consider the following matrix 

and consider the vectors v1 = (2, 0), v2 = (2, 1), v3 = (2, 2). 
Are the vectors v1 + v2 and v2 + v3 eigenvectors of A? 

The researchers classified students’ responses as either  
symbolic or formal. Students who looked for  such that  
A(v1 + v2) = (v1 + v2) and A(v2 + v3) = (v2 + v3) were identified 
as using “the formal definition of an eigenvector, but they 
proceeded in a symbolic way to give the answer”. Responses 
were categorized as formal for students who “reasoned that 
the sum of eigenvectors is an eigenvector if and only if all 
vectors belong to the same subspace” (p. 129). 

The responses mentioned above, of students who argue 
that the sum and the product of any two real diagonalizable 
matrices of order n is also diagonalizable and who justify 
this by referring to the formal definition of a diagonalizable 
matrix, could be identified as formal. However, it is impor-
tant to notice that these students omit a critical factor in the 
definition. While trying to justify their claim, they use the 
formal definition, but disregard the case where there is no 
common invertible matrix P such that both P−1AP and P−1BP 
are diagonal matrices. Other students only refer to the case 
in which the matrices A and B are diagonal, completely dis-
regarding the case in which A and B are not diagonal. One 
may classify this type of response as symbolic. 

 
In conclusion 
The concept of closure is clearly difficult for linear algebra 
students, but linear algebra is not the first context in which 
closure is a relevant concept. Already in elementary schools, 
children learn that it is not always possible to find a natural 
number quotient when one divides a natural number by 
another natural number. They could learn (without using the 
terminology) that the set of rational numbers is closed under 
division though the natural numbers are not. Similarly, mid-
dle school students learn about integers and that the set of 
integers is closed under subtraction even though the natural 
numbers are not. Perhaps earlier discussion of closure will 
help students to see that closure of a set cannot be assumed. 
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From the archives  
The following is an edited excerpt from The Interactive 
Monitoring of Children’s Learning of Mathematics by 
David Clarke, in issue 7(1), pp. 2–6.  

 
Here are some questions we never ask our mathematics 
students: 

• What was the best thing to happen in Maths?  

• What is the biggest worry affecting your work in 
Maths?  

• What is the most important thing you have learnt in 
Maths?  

• How do you feel in Maths classes?  

• How could we improve Maths classes?  

Yet it is the answers to questions like these which could 
more usefully guide the planning of mathematics instruction 
than many of the content-based questions we do ask. 

During 1984 about 700 children in 36 first-year mathe-
matics classes in 15 Victorian secondary schools were 
regularly given the opportunity, about once every two 
weeks, to give confidential written answers to questions like 
the ones above.  

Their replies were funny and moving, trivial and pro-
found. Their teachers were often placed in a dilemma. How 
do you respond to a child who writes,  

I don’t know what is wrong but I think it is going in one 
ear and out the other. How can I improve when I don’t 
understand? I want to improve and pass year 7 so 
much. Can you help me?  

[…] 
The IMPACT procedure required pupils to give confiden-

tial (but not anonymous), written responses, fortnightly, to 
two alternate sets of four simple questions [...]. In doing this 
the children had to reflect and report on their anxieties and 
successes in secondary mathematics, on the difficulties they 
experienced, and on the quality of the instruction they 
received.  
[…]  

The children’s responses graphically illustrate many of 
the issues currently occupying the attention of mathematics 
educators. The emergence of these issues in the writings of 
the pupils in contemporary mathematics classes endows 
each with an immediacy often missing in the cautious, con-
sidered words of educational research, and reminds us of our 
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obligations to those who are the subject, the justification and 
ultimately the beneficiaries of our efforts.  

All of the quotations which follow were taken from chil-
dren’s actual answers to the two sets of four questions […].  
Each quote was included because it was representative of a 
class of similar responses, exemplified a particular student 
perspective, or raised a significant issue. […] In each case the 
sex of the child is indicated, together with the month during 
which the statement was made. It should be noted that the 
school year in Australia runs from February to December.  

I like being in the middle room because I don’t like 
being in the brainy or the dumb room. Girl (February)  

The teacher works very slowly and I think that’s better 
I can understand better. Girl (February) 

The things that I liked best were firstly factors and sec-
ondly divisions. I liked them because I understood 
them. Girl (February)  

[The thing I would most like help with is] Fractions but 
the teacher thinks I know them. Boy (June) 

Main thing in Maths I have problems with dividing. 
Boy (March) 

Fractions and Long Division. Same Boy (September) 

Long Division and Fractions. Same Boy (November) 

[My biggest worry is] Keeping up with the rest of the 
class. Girl (February and every month thereafter) 

In tests I get a bit nervous and my mind goes fuzzy. 
Boy (May) 

I am not sure but I always seem to do something wrong 
in my graphs but cannot work out what I am doing 
wrong. Girl (August) 

[My biggest worry is] Passing 2nd term and getting a 
good report so mum and dad will be proud of me. Girl 
(August) 

[My biggest worry is] My dad has been away for six 
weeks now in a war exercise overseas in Europe. Girl 
(September) 

[The most important thing I have learnt in maths in the 
last two weeks is] I’m stupid in class. Girl (November) 

I don’t really think I’ve learnt anything very important 
to me. Because I don’t like maths. SORRY. Girl 
(March) 

[How do you feel in Maths classes at the moment?] 
Confused. Bored. Worried, Rushed. DUM. In other 
words I’m stuped. Girl (July) 

Interested. Right now I feel terible, awful, rotten. It’s 
got nothing to do with Maths but it’s in the way. Girl 
(September) 

Relaxed. Bored. I feel relaxed because I’m bored. Boy 
(March) 

Bored. Angry. (If you’re wondering why I’m angry it’s 
because I don’t like being bored). Girl (March) 

[How could we improve maths classes?] Have less 
work and more learning. Boy (September) 

Some observations […]  

• While many children gave serious, thoughtful 
responses to the IMPACT items, some students 
were unwilling or unable to make useful responses. 
Some teachers put forward the conjecture that stu-
dents with limited language skills had difficulty 
articulating their concerns and found the need for 
written responses a burden.  

• Detailed examination of students’ actual responses 
supported teachers’ observations that girls were 
more likely than boys to make useful responses, 
however a higher proportion of boys than girls 
reported finding the IMPACT procedure personally 
useful. [...] 

• Several instances were reported in which teacher 
action arising from information obtained through 
the IMPACT procedure led to positive changes in 
students’ attitudes and achievement. Lack of 
teacher response, on the other hand, was the single 
complaint voiced by those students dissatisfied 
with the IMPACT program. [...] 

• While the quality and character of the children’s 
responses was extremely varied, many of the par-
ticipating students made responses which were 
informative and showed real insight.  

[…]  
There were clearly instances where teacher action in 

response to student requests or suggestions significantly 
altered the form of instruction. Students in those classes 
were confronted with the need for a reinterpretation of their 
role, and the idea of students as “active participants” (rather 
than passive recipients) took on an added meaning. 

 
 

Editor’s Note 
 

2020 was a year of many losses. Here I’d like to mark the 
passing of two outstanding Australian scholars, Judy Mous-
ley and David Clarke. Judy’s passion for supporting 
disadvantaged students resonates with many of the articles 
in this issue. In her research and her teaching she advocated 
for the inclusion of all students and her work with indige-
nous Australian students is well known internationally. 
David’s article, excerpted above, shows his lifelong interest 
in listening to the voices of learners. He is perhaps best 
known for the Learner’s Perspective Study, which focussed 
on the voices of students in 16 countries. Both were impor-
tant leaders in the mathematics education community. They 
will be missed.
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