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AN INTRODUCTION TO MATHEMATICAL EPIDEMIOLOGY

What is Epidemiology?

What is Epidemiology?

▶ Epidemiology is the subject that studies the patterns of health
and illness which associated factors at the population level.

▶ The word "epidemiology" is derived from the Greek terms:
▶ epi - meaning "upon"
▶ demos - meaning "people"
▶ logos - meaning "study"

▶ The origin of this word implies that epidemiology is concerned
primarily with human populations.

▶ The role of the father of epidemiology is often assigned to the
Greek physician Hippocrates (460-377 B.C.E.), who described
the connection between disease and environment.
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What is Epidemiology?

▶ The term "epidemiology" appears to have first been used to
describe the study of epidemics in 1802 by the Spanish
physician de Villalba in Epidemiologia Espanola.

▶ Until the twentieth century, epidemiological studies were
mostly concerned with infectious diseases.

▶ Nowadays, the leading causes of deaths worldwide are diseases
such as stroke and coronary heart disease, positioning diseases
that do not transmit from one person to another as a central
concern of epidemiology.

▶ Among infectious diseases, those that dominate worldwide as a
cause of death include lower respiratory infections (such as
pneumonia) and HIV.
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What is Epidemiology?

A Brief History of Epidemic Diseases

A Brief History of Epidemic Diseases

▶ The plague of Athens struck the city between 430-426 B.C.E.,
described in detail by Thucydides.

▶ The causative agent of the Athens plague is still debated.

▶ Smallpox affected the Roman Empire and Egypt in 165-180
C.E.

▶ The Black Death, occurring during 1348-1350, devastated the
Mediterranean and Europe, causing an estimated 50-100
million deaths.

▶ The pathogen responsible for the Black Death is believed to be
the Yersinia pestis bacterium.
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What is Epidemiology?

A Brief History of Epidemic Diseases

▶ A smallpox epidemic in the 16th century caused an estimated
35 million deaths among the Aztecs.

▶ In the early 20th century, an influenza pandemic killed an
estimated 20 million people worldwide.

▶ Significant outbreaks continue to occur, such as the Bombay
plague in 1905-1906, the 2003 SARS outbreak, and the 2009
H1N1 swine flu pandemic.

▶ The recent COVID-19 outbreak has strained health systems
worldwide and profoundly affected social life. COVID-19 has
caused approximately 6.98 million deaths worldwide. The total
number of confirmed cases globally is around 769 million.
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What is Epidemiology?

Modeling of Epidemic Diseases

Modeling of Epidemic Diseases

▶ Although epidemiology has a long history, the mathematical
study of diseases dates back approximately 350 years.

▶ The first statistical study is attributed to John Graunt, while
the first epidemiological model is credited to Daniel Bernoulli.

▶ Louis Pasteur made groundbreaking discoveries in disease
causes and prevention in the mid-19th century.

▶ Robert Koch identified the causes of tuberculosis, cholera, and
anthrax, laying the foundation for modern bacteriology.
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What is a Mathematical Model?

What is a Mathematical Model?

▶ A mathematical model is a description of a system using
mathematical tools and language.

▶ The process of developing mathematical models is called
mathematical modeling.

▶ In principle, mathematical modeling can be applied to any
system, biological or otherwise.

▶ Mathematical models are formulated for the following aims:
▶ To help explain a system.
▶ To study the effects of its various components.
▶ To make predictions about their behavior.
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What is a Mathematical Model?

Figure 2.1: Modeling diagram.
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What is a Mathematical Model?

Once a mathematical model is formulated, it can be investigated
with a number of mathematical tools:
▶ It may be analyzed to produce critical quantities that govern

the overall behavior of the solutions,
▶ It may be fitted to available data or used to stimulate

experiments that can produce data,
▶ Parameters of the model may be estimated,
▶ It may be simulated to understand how important each

parameter is to the solution.

After the model has been understood, we must address these
questions:
▶ What did we learn about the real world from the model?
▶ Is our model’s message supported by the information about

the system?
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What is a Mathematical Model?

Classification of Mathematical Models

Classification of Mathematical Models

▶ Mathematical models usually consist of parameters and
variables that are connected by relationships.

▶ Models can be classified in multiple ways:
▶ Linear/nonlinear: A model is classified as nonlinear if it

contains a nonlinear dependence on the variables (e.g., a
product of variables). Otherwise, it is classified as linear. The
models we will construct and use in this study will be nonlinear.

▶ Static/dynamic: A dynamic model accounts for
time-dependent changes in the state of the system, while a
static model calculates system quantities assuming that it does
not change in time and thus is time-invariant. Dynamic
models typically employ differential equations or difference
equations. The models that we will consider in this study will
be dynamic models.
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What is a Mathematical Model?

Classification of Mathematical Models

▶ Discrete/continuous: Discrete models treat time or system
states as discrete. Continuous models incorporate time and
system states as continuous.

▶ Deterministic/stochastic: A deterministic model is one in
which every set of variable states is uniquely determined by the
parameters in the model and the initial state of the variables.
Stochastic models are characterized by randomness, and
variable states are described by probability distributions. The
models that we will consider in this study will be deterministic
models.
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Mathematical Epidemiological Modeling

Mathematical Epidemiological Modeling

▶ Dividing a system into various compartments for modeling is
called a compartmental model.

▶ Each compartment represents a specific state, and individuals
move between these compartments according to certain rules.

▶ When a disease spreads in a population, it splits the
population into non-intersecting classes.
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Mathematical Epidemiological Modeling

▶ In one of the simplest scenarios, there are three such classes:
▶ Susceptible individuals: The class of individuals who are

healthy but can contract the disease. The size of this class is
usually denoted by S.

▶ Infected individuals: The class of individuals who have
contracted the disease and are now sick with it. The size of
this class is usually denoted by I.

▶ Recovered/Removed individuals: The class of individuals
who have recovered and cannot contract the disease again.
The size of this class is usually denoted by R.
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Mathematical Epidemiological Modeling

▶ The number of individuals in each of these classes changes
with time, that is, S(t), I (t) and R(t) are functions of time t.

▶ The total population size N is the sum of the sizes of these
three classes:

N(t) = S(t) + I (t) + R(t).

▶ Such a model is called an SIR model
▶ SIR models can be further categorised depending on the

immunity against the infection:
▶ SI model: No recovery,
▶ SIS model: Recovery occurs but no immunity,
▶ SIR model: Recovery and permanent immunity,
▶ SIRS model: Recovery and temporary immunity.
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Mathematical Epidemiological Modeling

Bernoulli’s Model

▶ One of the pioneering studies in mathematical modeling is
Bernoulli’s investigation of the dynamics of smallpox ([2]).

▶ In this study, Bernoulli formulated the mathematical model as
follows:

dS

dt
= −(λ+ µ)S ,

dR

dt
= λ(1 − d)S − µR,

where S and R denotes the susceptible and recovered
individuals respectively.
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Mathematical Epidemiological Modeling

α = rate of the population that has gained immunity to the disease,

d = death rate induced by the disease,

µ = natural death rate,

λ = rate at which susceptibles become infected.

▶ It was known that the death rate d for several large cities was
approximately 1

13 ≈ 7.7%.

▶ Bernoulli estimated d = 1
8 ≈ 12.5% for Wroclaw, Poland.

▶ For Paris, assuming a life expectancy of 32 years, the calculated
that 15% of susceptible individuals would die or equivalently, 85%
would gain immunity.
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Mathematical Epidemiological Modeling

Kermack-McKendrick SIR Model

Kermack-McKendrick SIR Model

▶ One of the first epidemic models proposed by Kermack and
McKendrick in 1927 is an SIR model, described by the system ([3]):

S ′(t) = −βSI

I ′(t) = βSI − αI ,

R ′(t) = αI .

▶ The coefficient β is the constant of proportionality called the
transmission rate.

▶ Individuals who recover or die leave the infected class at constant
per capita probability per unit of time α, called recovery rate.
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Mathematical Epidemiological Modeling

Kermack-McKendrick SIR Model

▶ There are several assumptions on the Kermack-McKendrick
model:
▶ There are no births and deaths in the population,
▶ No one from the outside enters the population, and no one

leaves the population,
▶ All recovered individuals have complete immunity and cannot

be infected again.
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What is the Incidence Function?

▶ The number of individuals who become infected per unit of time in
epidemiology is called incidence.

▶ In Kermack-McKendrick SIR model, incidence function have taken as

f (S , I ) = βSI ,

which called bilinear incidence or mass action incidence.
▶ An incidence function possesses the following properties [4]:

(i) f : R2 → R+ is a differentiable function. f (S , 0) = f (0, I ) = 0 for all
S , I ≥ 0 and f (S , I ) > 0 for all S , I > 0,

(ii) There exists η > 0 such that f (S , I ) ≤ ηS for all S , I ≥ 0,

(iii) ∂f (S,I )
∂S

> 0 and bounded for all S ≥ 0 and I > 0,

(iv) ∂f (S,I )
∂I

≥ 0 for all S , I ≥ 0,

(v) I ∂f (S,I )
∂I

− f (S , I ) ≤ 0 for all S , I ≥ 0.
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What is the Incidence Function?

▶ Bilinear incidence rate implies that the number of individuals
getting infected per unit of time increases as the number of
susceptible individuals increases, which may not be a realistic
assumption.

▶ To handle this concern, various alternative incidence rates have
been proposed in the literature. For instance:

Saturated incidence :
βSI

1 + α2I
,

Beddington-DeAngelis incidence :
βSI

1 + α1S + α2I
,

Crowley-Martin incidence :
βSI

(1 + α1S)(1 + α2I )
.
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What is the Basic Reproduction Number?

▶ The persistence of infection in mathematical epidemic models
depends upon the threshold.

▶ This threshold is known as the basic reproduction number and
denoted by R0.

▶ Epidemiologically, R0, gives the number of secondary cases
produced by a single infectious individual in a population
consisting only of susceptible individuals.

▶ Several techniques have been developed to derive the
next-generation matrix from compartmental models.

▶ Here, two different approaches that can be used for continuous
and discrete models will be presented.
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Calculation R0 for Continuous Models

Calculation R0 for Continuous Models
This method can be used for determining the next-generation matrix from ordinary
differential equation compartment models.

▶ Let x and y be the vector of variables in the infected compartments and
noninfected compartments, respectively.

▶ Arrange the equations so that the first n components of the system correspond
to the infected compartments. Let

▶ Fi (x , y) be the rate of appearance of new infections in compartment i ,
▶ V+

i (x , y) and V−
i (x , y) be the the remaining transitional terms into and out

from the compartment i , respectively, such as births, deaths, recovery, etc.
▶ Let Vi (x , y) = V−

i (x , y)− V+
i (x , y).

▶ The next-generation matrix is defined as FV−1 and the basic reproduction
number is

R0 = ρ(FV−1),

where ρ denotes the spectral radius and

F =

[
∂Fi (E0)

∂xj

]
, V =

[
∂Vi (E0)

∂xj

]
.
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What is the Basic Reproduction Number?

Calculation R0 for Continuous Models

An Example for Computing R0

Let’s consider the smoking model given in [14]

dP

dt
= λ− β

2PL
P + L

− (d + µ)P

dL

dt
= β

2PL
P + L

− (ζ + d + µ)L

dS

dt
= ζL− (δ + d + µ)S

dQ

dt
= δS − (µ+ d)Q

Here, P, L,S , and Q denote the number of potential, occasional,
chain, and quit smoker individuals, respectively. The smoke-free
equilibrium given as E0 =

(
λ

d+µ , 0, 0, 0
)
.
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What is the Basic Reproduction Number?

Calculation R0 for Continuous Models

λ = The recruitment rate of the non-smoking class

from the larger embedding population,

β = The transmission rate of non-smokers into smoking class,

d = The natural death rate,

µ = Death rate induced by smoking,

ζ = The rate at which occasional smokers being chain smokers,

δ = The rate at which chain smokers that quit smoking.
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What is the Basic Reproduction Number?

Calculation R0 for Continuous Models

It is enough that consider only infected compartments. Let
x = (x1, x2) = (L,S) be the vector of infected variables. Then

F1(x) =
2βPL
P + L

,

F2(x) = 0,

V1 = V−
1 (x)− V+

1 (x) = (ζ + d + µ)L,

V2 = V−
2 (x)− V+

2 (x) = (δ + d + µ)S − ζL,

and

F =

(
2β 0
0 0

)
,

V =

(
ζ + d + µ 0

−ζ δ + d + µ

)
.

Assoc. Prof. Dr. Mehmet GÜMÜŞ



AN INTRODUCTION TO MATHEMATICAL EPIDEMIOLOGY

What is the Basic Reproduction Number?

Calculation R0 for Continuous Models

Then we have

FV−1 =

(
2β 0
0 0

)(
1

ζ+d+µ 0
ζ

(ζ+d+µ)(δ+d+µ)
1

δ+d+µ

)
=

(
2β

ζ+d+µ 0
0 0

)
.

Therefore
R0 = ρ(FV−1) =

2β
ζ + d + µ

.
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What is the Basic Reproduction Number?

Calculation R0 for Discrete Models

Calculation R0 for Discrete Models

Here we present a method can be used to calculation of the R0 for discrete epidemic
models ([16]).

▶ Let x = (x1, x2, . . . , xn) denote the n states of a population.
▶ Reorder the states so that the first m states are infected states, and the

remaining n −m states are uninfected states.
▶ Assume there exists a unique disease-free equilibrium E0.
▶ Then the Jacobian matrix evaluated at E0 has the following form:

J =

(
F + T 0

A C

)
,

where the m ×m submatrices F and T are non-negative, 0 is the zero matrix,
and F + T is irreducible. Assume ρ(C), ρ(T ) < 1.

▶ Then
R0 = ρ(F [I − T ]−1).
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What is the Basic Reproduction Number?

Calculation R0 for Discrete Models

An Example for Computing R0

▶ Let’s consider the model

Sn+1 =
A+ Sn

1 + βIn + d

In+1 =
In + βSn+1In
1 + d + γ + ε

.

▶ The disease-free equilibrium given as E0 =
(
A
d , 0
)
.

▶ Rearrange variables in the model as (In, Sn). Then
E0 =

(
0, Ad

)
.
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What is the Basic Reproduction Number?

Calculation R0 for Discrete Models

Then we have

J(E0) =

(
F + T 0

A C

)
=

 βA
d

1+d+γ+ε +
1

1+d+γ+ε 0

−
βA
d

1+d
1

1+d

 .

Here, the submatrices F and T are non-negative, F + T is
irreducible, and ρ(T ), ρ(C ) < 1. Then

R0 = ρ(F (1 − T )−1) =
βA

d(d + γ + ε)
.
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Some Mathematical Definitions

Definition
Consider the differential equation system

dx

dt
= f (x), (6.1)

where x = (x1, x2, . . . , xn) and f = (f1, f2, . . . , fn). If f (x∗) = 0, then x∗ is
called an equilibrium point of the system (6.1).

Definition
Consider the difference equation system

xn+1 = f (xn), (6.2)

where xn = (x1
n , x

2
n , . . . , x

k
n ) and f = (f1, f2, . . . , fn). If f (x∗) = x∗, then x∗ is

called an equilibrium point of the system (6.2).
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Some Mathematical Definitions

Stable and Unstable Equilibrium

Definition
Let x∗ be an equilibrium point of the continuous system (6.1). Then x∗ is said to be
stable if, for any given ε > 0, there exists δ > 0 such that for every solution x = x(t)

satisfying
∥x0 − x∗∥ < δ,

we have
∥x(t)− x∗∥ < ε.

An equilibrium point that is no stable is unstable.

Definition
Let x∗ be an equilibrium point of the discrete system (6.2). Then x∗ said to be stable
if, for any given ε > 0, there exists δ > 0 such that for every solution f n(x0) satisfying

∥x0 − x∗∥ < δ,

we have
∥f n(x0)− x∗∥ < ε, ∀n ∈ N.

An equilibrium point that is no stable is unstable.Assoc. Prof. Dr. Mehmet GÜMÜŞ
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Some Mathematical Definitions

Stable and Unstable Equilibrium

Figure 6.1: Stable equilibrium x∗.
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Some Mathematical Definitions

Stable and Unstable Equilibrium

Figure 6.2: Unstable equilibrium x∗.
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Some Mathematical Definitions

Asymptotically Stable Equilibrium

Definition
Let x∗ be a stable equilibrium point of the continuous system (6.1). x∗ is called locally
asymptotically stable if there exists a δ > 0 such that for ∥x0 − x∗∥ < δ, we have

lim
t→∞

x(t) = x∗.

Definition
Let x∗ be a stable equilibrium point of the discrete system (6.2). x∗ is called locally
asymptotically stable if there exists a δ > 0 such that for ∥x0 − x∗∥ < δ, we have

lim
n→∞

xn = x∗.

▶ If δ → ∞, then x∗ is globally asymptotically stable.
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Some Mathematical Definitions

Asymptotically Stable Equilibrium

Figure 6.3: Asymptotically stable equilibrium x∗.
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Some Mathematical Definitions

Asymptotically Stable Equilibrium

Figure 6.4: Globally asymptotically stable equilibrium x∗.
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Some Mathematical Definitions

Schur-Cohn Criterion

Definition (Schur-Cohn Criterion)
Let x∗ be an equilibrium point of the continuous system (6.1), and
J(x∗) be the Jacobian matrix of f at x∗. Also, let λi ,
i = 1, 2, . . . , n are be the characteristic roots of J(x∗). Then

(i) If λi ’s have negative real parts, then x∗ is locally
asymptotically stable.

(ii) If the real parts of λi ’s are zero, then x∗ is stable but not
asymptotically stable.

(iii) If λi ’s have positive real parts, then x∗ is unstable.
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Some Mathematical Definitions

Schur-Cohn Criterion

Definition (Schur-Cohn Criterion)
Let x∗ be an equilibrium point of the discrete system (6.2), and

p(λ) = λn + a1λ
n−1 + · · ·+ an

be the characteristic polynomial of the system. Then x∗ is locally asymptotically
stable if and only if

(i) p(1) > 0,

(ii) (−1)np(−1) > 0,

(iii) The (n − 1)× (n − 1) matrices

B±
n−1 =



1 0 · · · 0 0
p1 1 · · · 0 0
...

...
. . .

...
...

pn−3 pn−4 · · · 1 0
pn−2 pn−3 · · · p1 1

±



0 0 · · · 0 pn
0 0 · · · pn pn−1
...

...
. . .

...
...

0 pn · · · p4 p3
pn pn−1 · · · p3 p2


are positive innerwise.
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Some Mathematical Definitions

Positively Invariant Set and Positive Definite Function

Definition (Positively Invariant Set)
A subset Ω ⊆ Rn is said to be positively invariant with respect to
the continuous system (6.1) if, for every x0 ∈ Ω and t ≥ 0,
x(t) ∈ Ω.

Definition (Positive Definite Function)
Let x∗ be an equilibrium point of the continuous system (6.1). A
function V : Rn → R is said to be positive definite at x∗ if it
satisfies the following conditions:

(i) V (x∗) = 0,

(ii) V (x) > 0 for all x ∈ B(x∗, δ) and δ > 0.
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Some Mathematical Definitions

Lyapunov Function

Definition (Lyapunov Function)
Let x∗ be an equilibrium point of the continuous system (6.1), the set Ω
be positively invariant and V : Ω → R be positive definite at x∗. If

lim
∥x∥→∞

V (x) = ∞,

then the function V is said to be a Lyapunov function.

Definition (Lyapunov Function)
Let x∗ be an equilibrium point of the discrete system (6.2), the set Ω be
positively invariant and Vn : Ω → R be positive definite at x∗. If

▶ Vn is continuous on Ω,

▶ ∆Vn(x) ≤ 0, for all x ∈ Ω, x ̸= x∗.

then the function Vn is said to be a Lyapunov function.
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Some Mathematical Definitions

Lyapunov Stability Theorem

Definition (Lyapunov Stability Theorem)
Let x∗ be an equilibrium point of the continuous system (6.1) and
V be a Lyapunov function. If

V (x) < 0

for all x ̸= x∗, then x∗ is globally asymptotically stable.

Definition (Lyapunov Stability Theorem)
Let x∗ be an equilibrium point of the discrete system (6.2) and V

be a Lyapunov function. If

▶ ∆Vn(x) < 0 for all x ̸= x∗,

▶ lim
∥x∥→∞

Vn(x) = ∞,

then x∗ is globally asymptotically stable.
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Some Mathematical Definitions

LaSalle’s Invariance Principle

Definition (LaSalle’s Invariance Principle)
Let x∗ be an equilibrium point of the continuous system (6.1).
Suppose Ω ⊂ Rn is a bounded and positively invariant set. Let
V : Ω → R be a Lyapunov function such that for every x ∈ Ω,

V ′(x) ≤ 0.

Define the invariant set

M = {x ∈ Ω | V ′(x) = 0}.

If M contains only the equilibrium point x∗, then x∗ is globally
asymptotically stable.
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LaSalle’s Invariance Principle

Definition (LaSalle’s Invariance Principle)
Let x∗ be an equilibrium point of the discrete system (6.2).
Suppose Ω ⊂ Rn is a bounded and positively invariant set. Let
Vn : Ω → R be a Lyapunov function such that for every x ∈ Ω,

∆Vn(x) ≤ 0.

Define the invariant set

M = {x ∈ Ω | ∆Vn(x) = 0}.

If M contains only the equilibrium point x∗, then x∗ is globally
asymptotically stable.
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LaSalle’s Invariance Principle

Definition
Let Γ(u0, t) be a solution orbit of (6.1) with initial point
u0 = (x0, y0). In this case,

(i) The part of the solution orbit for t ≤ t0 is called the negative
orbit and denoted by Γ−(u0, t).

(ii) The part of the solution orbit for t ≥ t0 is called the positive
orbit and denoted by Γ+(u0, t).
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LaSalle’s Invariance Principle

Definition
Let Γ(u0, t) be a solution orbit of (6.1) with initial point
u0 = (x0, y0) and let solutions be bounded. In this case,

(i) The set that the negative orbit converges to is called the
α-limit set:

α(u0) =

{
a ∈ R2 | ∃{ti}−∞

i=1 such that lim
ti→∞

(x(ti ), y(ti )) = a

}
(ii) The set that the positive orbit converges to is called the

ω-limit set:

ω(u0) =

{
a ∈ R2 | ∃{ti}−∞

i=1 such that lim
ti→∞

(x(ti ), y(ti )) = a

}
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LaSalle’s Invariance Principle

Theorem (Poincaré-Bendixson Theorem)
Let Γ+(u0, t) be the positive orbit contained in a closed and bounded region in the
plane. Assume that its ω-limit set contains no equilibrium points. Then one of the
following holds:

(i) Γ+(u0, t) is a periodic orbit (i.e., Γ+(u0, t) = ω(u0)).

(ii) ω(u0) is a periodic orbit.

Theorem (Poincaré-Bendixson Trichotomy)
Let Γ+(u0, t) be the positive orbit contained in a closed and bounded region D in the
plane. Assume D contains a finite number of equilibrium points. Then one of the
following holds:

(i) ω(u0) is an equilibrium point.

(ii) ω(u0) is a periodic orbit.

(iii) ω(u0) consists of a finite number of equilibrium points and contains orbits Γi
such that each Γi ’s α- and ω-limit sets contain one of these equilibrium points.
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LaSalle’s Invariance Principle

Theorem (Bendixson’s Criterion)
Let D ⊆ R2 be a simply connected open set. If

div(f , g) ≡ ∂f

∂x
+

∂g

∂y

is nonzero and does not change sign in D, then the system has no periodic
orbits in D.

Theorem (Dulac’s Criterion)
Let D ⊆ R2 be a simply connected open set and B : D → R be a function with
first partial derivatives. If

div(Bf ,Bg) =
∂(Bf )

∂x
+

∂(Bg)

∂y

is nonzero and does not change sign in D, then the system has no periodic
solutions in D. B is called a Dulac function.
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Relation Between Difference and Differential Equations

▶ A mathematical model is established with the help of
differential equations and difference equations.

▶ Discrete-time epidemic models have an important place in
mathematical epidemiology.

▶ However, research on discrete-time epidemic models is
currently very scarce in the literature.

▶ Defining the model discretely or examining the continuous
model by discretizing it has many advantages in mathematical
epidemiology.
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▶ Collecting epidemic data generally in separate time units (such
as daily, monthly, annual) is just one of these advantages.

▶ For this reason, it may be more useful to use discrete-time
models in the mathematical modeling of epidemic diseases.

▶ These models are more advantageous than continuous ones.

▶ On the other hand, difference equations are discrete analogues
of ordinary differential equations and are used to study their
numerical solutions.
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▶ In cases where analytical solutions of the differential equation
system cannot be obtained, a discrete equation related to the
relevant equation can be used.

▶ Therefore, there is a need to discretize the system to calculate
good analytical approximations of the solutions.

▶ Recently, the nonstandard finite difference scheme was
proposed by Mickens ([5, 6, 7]) and has attracted great
attention.

▶ An important advantage of the Mickens method is that it
provides more effective preservation of global asymptotic
stability (compared to the Euler and Runga Kutta methods).
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Euler Method

Euler Method

Consider the first-order differential equation

dy

dt
= f (t, y(t)), y(t0) = y0, t0 ≤ t ≤ b.

Let us divide the interval [t0, b] into N equal subintervals. The size
of each subinterval is called step size of the method and is denoted
by h = b−t0

N . This step size defines the nodes t0, t1, . . . , tN , where
tj = t0 + jh. To derive the discrete equation, the derivative dy

dt is
approximated by a difference quotient,

dy

dt
≈ y(t + h)− y(t)

h
.
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Euler Method

Substituting this value into the differential equation gives

y(t + h) = y(t) + hf (t, y(t)).

For t = t0 + nh, we obtain

y(t0 + (n + 1)h) = y(t0 + nh) + hf (t0 + nh, y(t0 + nh))

for n = 0, 1, . . . ,N − 1.
Adapting the difference equation notation and replacing y(t0 + nh)

by y(n) gives
y(n + 1) = y(n) + hf (n, y(n)).

This equation defines Euler’s algorithm, which approximates the
solutions of the differential equation at the node points.
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An NSFD Method

▶ In [5, 6, 7], a nonstandard finite difference (NSFD) method
was introduced.

▶ The NSFD method is based on two fundamental principles:
▶ The substitution of discrete first-order derivatives with an

expression of the form:

dy

dt
=

yn+1 − yn
φ(h)

,

where h denotes the time step size, and φ represents the
denominator function satisfying φ(h) = h + O(h2).

▶ Utilization of nonlocal approximations for replacing linear or
nonlinear functions of y , such as y2 ≈ yn+1yn.
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An NSFD Method

▶ It’s crucial to recognize that here isn’t a unique NSFD scheme
for a given differential equation.

▶ Therefore, the dynamical properties of an NSFD scheme must
undergo analysis to verify whether it maintains dynamical
consistency with its original continuous equation or not.
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A Novel Hepatitis B Epidemic Model

▶ Recently, together with my PhD student Kemal Türk, we developed
and analyzed a new Hepatitis B epidemic model.

▶ The model employed a Beddington-DeAngelis type incidence rate
and included a constant vaccination rate.

▶ We ensured the model’s properties such as non-negativity,
boundedness, the basic reproduction number R0, stability nature,
and bifurcation analysis.

▶ Using the Bendixson theorem, we demonstrated that the disease-free
equilibrium is globally asymptotically stable when R0 < 1.

▶ We identified a transcritical bifurcation phenomenon occurring when
R0 = 1.

Assoc. Prof. Dr. Mehmet GÜMÜŞ



AN INTRODUCTION TO MATHEMATICAL EPIDEMIOLOGY

A Novel Hepatitis B Epidemic Model

▶ It was concluded, utilizing Dulac’s criteria, that the endemic
equilibrium is globally asymptotically stable when R0 > 1.

▶ Additionally, we derived a discrete system of difference equations by
constructing a non-standard finite difference (NSFD) scheme from
the continuous model.

▶ We showed that solutions of this discrete system maintain dynamic
consistency for all finite step sizes.

▶ The theoretical results were further validated and visualized through
numerical simulations.

▶ These simulations also illustrated that the NSFD scheme
outperforms Euler or RK4 schemes, as indicated by our theoretical
findings.

▶ Our study has been published in the Q1 quadrant journal "Journal
of Applied Mathematics and Computing".
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A Novel Hepatitis B Epidemic Model

▶ Hepatitis B is one of the most dangerous epidemic diseases,
causing the deaths of a large number of people.

▶ Hepatitis B infection is a viral disease that affects the liver and
is caused by the Hepatitis B virus.

▶ If not detected early and treated, this disease can lead to
cirrhosis, liver cancer, or liver failure, making it a global health
issue.

▶ It is known that Hepatitis B causes an average of 800,000
deaths per year, and it is estimated that there are more than
350 million chronic carriers.
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A Novel Hepatitis B Epidemic Model

▶ The Hepatitis B virus can be transmitted through body fluids
such as blood and semen.

▶ Vaccination programs are implemented to prevent the spread
of Hepatitis B and are quite effective in controlling the disease
([8, 9, 10]).

▶ Various studies have been conducted to analyze the spread
dynamics of Hepatitis B ([9, 10, 11, 12, 13]).

▶ Motivated by these studies, we developed a new approach to
model the spread dynamics of Hepatitis B [19].
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Constructing of the Model

Constructing of the Model

Let us divide the population into the classes S , I and R ,
representing the susceptible, infected, and recovered individuals,
respectively. Let’s make the following assumptions on the model:

▶ Initially, the sizes of subpopulations S(0), I (0),R(0) are
non-negative.

▶ Newborn individuals enter the susceptible class.

▶ The incidence rate is of Beddington-DeAngelis type.

▶ Infected individuals can transmit the disease.

▶ Vaccinated individuals move to the recovered class.

▶ Recovered individuals have permanent immunity to the disease.
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Constructing of the Model

▶ Based on these assumptions, a new Hepatitis B epidemic
model has been developed with the following system of
differential equations:

dS

dt
= Λ− βSI

1 + α1S + α2I
− (p + µ)S ,

dI

dt
=

βSI

1 + α1S + α2I
− (µ+ ν + σ)I ,

dR

dt
= pS + νI − µR.

▶ Here,
S(0) > 0, I (0) > 0, R(0) > 0,

and all parameters are non-negative.
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Constructing of the Model

Here are the definitions of the parameters:

Λ: The recruitment rate into the population,

β: The transmission rate of the disease,

α1: The effect of susceptible individuals on the transmission rate,

α2: The effect of infected individuals on the transmission rate,

p: The vaccination rate,

µ: The natural death rate,

σ: The disease-induced death rate,

ν: The recovery rate.

Assoc. Prof. Dr. Mehmet GÜMÜŞ



AN INTRODUCTION TO MATHEMATICAL EPIDEMIOLOGY

A Novel Hepatitis B Epidemic Model

Constructing of the Model

▶ Here, the parameters α1 and α2 can cause a saturation effect
in the transmission rate as the number of susceptible and
infected individuals increases.

▶ This is the fundamental difference between the
Beddington-DeAngelis incidence rate and the bilinear incidence
rate.
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Dynamical Analysis of the Model

▶ Since the first two equations in the system are independent of the
variable R, it is sufficient to examine the following reduced model:

dS

dt
= Λ− βSI

1 + α1S + α2I
− (p + µ)S ,

dI

dt
=

βSI

1 + α1S + α2I
− (µ+ ν + σ)I . (8.1)

▶ It can be easily seen that the set

Ω =

{
(S , I ) ∈ R2

+ | S + I ≤ Λ

µ

}
(8.2)

is a positively invariant set for the solutions of the model (8.1).
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Dynamical Analysis of the Model

▶ Additionally, the system has two equilibrium points E0 = (S0, I0)

and E∗ = (S∗, I ∗), where

S0 =
Λ

p + µ
,

I0 = 0,

S∗ =
µ+ ν + σ + α2Λ

β − α1(µ+ ν + σ) + α2(p + µ)
,

I ∗ =
βΛ− (p + µ+ α1Λ)(µ+ ν + σ)

(µ+ ν + σ)(β − α1(µ+ ν + σ) + α2(p + µ))
.

▶ The basic reproduction number is calculated as:

R0 =
βΛ

(p + µ+ α1Λ)(µ+ ν + σ)

▶ E0 is always exists while E∗ is exists if and only if R0 > 1.
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Dynamical Analysis of the Model

Theorem
The equilibrium E0 is locally asymptotically stable if R0 < 1 and unstable
if R0 > 1.

Proof.
The Jacobian matrix at E0 is given by

J0 =

(
−(p + µ) −R0(µ+ ν + σ)

0 (R0 − 1)(µ+ ν + σ)

)
.

From this, the eigenvalues of J0 are

λ1 = −(p + µ), λ2 = (µ+ ν + σ)(R0 − 1).

For R0 < 1, both λ1 and λ2 are negative, implying that E0 is locally
asymptotically stable. For R0 > 1, λ2 is positive, implying that E0 is
unstable.
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Dynamical Analysis of the Model

Theorem
If R0 < 1, then E0 is globally asymptotically stable.

Proof.
Since E ∗ does not exist for R0 < 1, the only equilibrium point of
system (8.1) is E0. Thus, solutions push towards the I -axis.
According to (8.2), solutions are bounded and the S-axis is
positively invariant. Moreover, since E0 is locally asymptotically
stable, by the Bendixson’s Trichotomy, all positive solutions of
model (8.1) converge to E0. Therefore, E0 is globally
asymptotically stable.
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Dynamical Analysis of the Model

Theorem
If R0 > 1, then the equilibrium E∗ is locally asymptotically stable.

Proof.
The Jacobian matrix at E∗ can be calculated as

J∗ =

(
− [βΛ−a(b+α1Λ)](β−α1a)

β(a+α2Λ)
− b − a2[β+α2(b+α1Λ)]

β(a+α2Λ)
[βΛ−a(b+α1Λ)](β−α1a)

β(a+α2Λ)
a2[β+α2(b+α1Λ)]

β(a+α2Λ)
− a

)
,

where
a = µ+ ν + σ, b = p + µ.

For the eigenvalues of the matrix to be negative, it should satisfy
Tr(J∗) < 0 and det(J∗) > 0.
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Proof (Continued).
After long mathematical calculations, the trace and determinant
can be computed as

Tr(J∗) = −(R0 − 1)a2(b + α1Λ)[R0b + (R0 − 1)α1Λ + α2Λ]

βΛ(a+ α2Λ)
− b,

det(J∗) =
(R0 − 1)a2(b + α1Λ) [R0ab + (R0 − 1)aα1Λ + α2b]

βΛ(a+ α2Λ)
.

Therefore, for R0 > 1, the trace is negative and the determinant is
positive, which implies that E ∗ is locally asymptotically stable.
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Dynamical Analysis of the Model

Theorem
If R0 > 1, then E∗ is globally asymptotically stable.

Proof.
Let

f (S , I ) = Λ− βSI

1 + α1S + α2I
− (p + µ)S ,

g(S , I ) =
βSI

1 + α1S + α2I
− (µ+ ν + σ)I

be defined. Let B : Ω → R, B(S , I ) = I−1 be a Dulac function. Then, for
every (S , I ) ∈ Ω,

∂(Bf )

∂S
+

∂(Bg)

∂I
= − β(1 + α2I )

(1 + α1S + α2I )2
− p + µ

I
− α2βS

(1 + α1S + α2I )2
< 0.

Thus, the (8.1) model has no periodic orbits in Ω. Since solutions are bounded
and E0 is unstable for R0 > 1, by Dulac’s Criterion, E∗ is globally
asymptotically stable.
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Dynamical Analysis of the Model

Theorem
At R0 = 1, the model undergoes a transcritical bifurcation.

Proof.
Let the (8.1) model be written as S = γ1 and I = γ2 as follows:

f1(γ1, γ2) = Λ− βγ1γ2

1 + α1γ1 + α2γ2
− (p + µ)γ1,

f2(γ1, γ2) =
βγ1γ2

1 + α1γ1 + α2γ2
− (µ+ ν + σ)γ2.

The Jacobian matrix at E0 point of (8.1) model for R0 = 1 and
β = β∗ = (p+µ+α1Λ)(µ+ν+σ)

Λ is

J =

(
−(p + µ) − β∗Λ

p+µ+α1Λ

0 β∗Λ
p+µ+α1Λ

− (µ+ ν + σ)

)
.
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Proof (Continued).
One of the eigenvalues of J is zero, indicating the presence of a bifurcation.
Let the left and right eigenvectors corresponding to the zero eigenvalue be
denoted by u = [u1, u2]

T and w = [w1,w2], respectively. Then the components
of u and w can be calculated as follows:

u1 = 0, u2 = 1, and w1 = − β∗Λ

(p + µ)(p + µ+ α1Λ)
, w2 = 1.

The bifurcation constants can be computed as

ξ1 =
2∑

i,j,k=1

ukwiwj
∂2fk (E0)

∂γi∂γj
= −

2βS0

(1 + α1S0)2

(
α2 +

β∗Λ

(p + µ)(p + µ+ α1Λ)

)
< 0,

ξ2 =
2∑

i,k=1

vkwi
∂2fk (E0)

∂γi∂β∗ =
S0

1 + α1S0
> 0.

Therefore, by Theorem 4.1 in [18], the (8.1) model undergoes a transcritical
bifurcation at R0 = 1.
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Constructing of the NSFD Scheme

▶ Let the numerical approximations of S(t), I (t), and R(t) at discrete time
points t = nh, n ∈ N0 be denoted by Sn, In, and Rn, respectively, where h

is the time step size.

▶ The model is discretized using Mickens’ approach as follows:

Sn+1 − Sn

φ(h)
= Λ− βSn+1In

1 + α1Sn + α2In
− (p + µ)Sn+1,

In+1 − In
φ(h)

=
βSn+1In

1 + α1Sn + α2In
− (µ+ ν + σ)In+1, (8.3)

Rn+1 − Rn

φ(h)
= pSn+1 + νIn+1 − µRn+1.

▶ Here,
S0 > 0, I0 > 0, R0 > 0,

.
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Constructing of the NSFD Scheme

▶ The denominator function is

φ(h) =
eµh − 1

µ
.

▶ The denominator function is chosen to ensure the boundedness of the
solutions.

▶ Since the first two equations are independent of Rn, it is sufficient to
investigate the following system written in explicit form:

Sn+1 =
Λφ+ Sn

1 + φ(ϕ+ p + µ)
,

In+1 =
In + φϕSn+1

1 + φ(µ+ ν + σ)
. (8.4)

▶ Here, ϕ = ϕ(S , I ) = βI
1+α1S+α2I

.
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Constructing of the NSFD Scheme

▶ For this model, the set

Ωd =

{
(Sn, In) ∈ R2

+ | Sn + In ≤ Λ

µ

}
is a positively invariant region.

▶ The system (8.4) has exactly the same equilibrium points as
the continuous model: E0 and E ∗.

▶ Now, the stability behavior of these equilibria will be examined.
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Constructing of the NSFD Scheme

▶ For simplicity, let’s express the system as

F (S , I ) =
Λφ+ Sn

1 + φ(ϕ+ p + µ)
,

G (S , I ) =
In + φϕSn+1

1 + φ(µ+ ν + σ)
. (8.5)

▶ In this case, the Jacobian matrix at an equilibrium E = (S , I )

of the discrete system (8.4) is

J(E ) =

(
∂F
∂S (S , I )

∂F
∂I (S , I )

∂G
∂S (S , I )

∂G
∂I (S , I )

)
.
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Constructing of the NSFD Scheme

Theorem
The equilibrium E0 is locally asymptotically stable if R0 < 1 independent of h,
and unstable if R0 > 1.

Proof.
The Jacobian matrix at E0 is

J(E0) =

(
1

1+φ(p+µ)
−R0φ(h)(µ+ν+σ)

1+φ(h)(p+µ)

0 1+R0φ(h)(µ+ν+σ)
1+φ(h)(µ+ν+σ)

)
.

Therefore, the eigenvalues are

λ1 =
1

1 + φ(p + µ)
, λ2 =

1 +R0φ(h)(µ+ ν + σ)

1 + φ(h)(µ+ ν + σ)
.

Clearly, if R0 < 1, then |λ1,2| < 1 for each h. Thus, E0 is locally asymptotically
stable. Conversely, if R0 > 1, then λ2 > 1, implying that E0 is unstable.
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Constructing of the NSFD Scheme

Theorem
The equilibrium E∗ is locally asymptotically stable if R0 > 1 independent
of h.

Proof.
The Jacobian at E∗ is given by

J(E∗) =

(
1
x + α1tI

∗

x2 − (1+α1S
∗)t

x2

1
xy

[
z + α1tI

∗

x (z − x)
]

1
y

[
1 + t(1+α1S

∗)(x−z)
x2

]) ,

where

x = 1 + φ(ϕ∗ + p + µ) > 1,

y = 1 + φ(µ+ ν + σ) > 1,

z = φϕ∗ > 0,

t =
βφ(φΛ + S∗)

(1 + α1S∗ + α2I∗)
> 0.
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Constructing of the NSFD Scheme

Proof (Continued).
Then,

Tr(J(E ∗)) =
1
x
+

α1tI
∗

x2 +
1
y

[
1 +

1(1 + α1S
∗)(x − z)

x2

]
,

det(J(E ∗)) =
1

x2y
(x + t(1 + α1S

∗ + α1I
∗)).

For |Tr(J)| < 1 + det(J) < 2, E ∗ is locally asymptotically stable
([17]). This is ensured when R0 > 1.
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Numerical Simulations

▶ Simulations are important tools to evaluate the suitability of
the proposed mathematical model for real-world scenarios.

▶ Here, some numerical simulations will be provided to validate
the theoretical results.

▶ Additionally, a comparison between the Euler and RK4
schemes will be made with the proposed NSFD scheme.

▶ Simulations are performed using MATLAB software.

Assoc. Prof. Dr. Mehmet GÜMÜŞ



AN INTRODUCTION TO MATHEMATICAL EPIDEMIOLOGY

A Novel Hepatitis B Epidemic Model

Numerical Simulations

Parameter Value Parameter Value
Λ 0.5 p 0.00002
β 0.3 or 2 µ 0.06
α1 0.8 ν 0.9
α2 0.6 σ 0.08

Table 8.1: Parameter values used in simulations.
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Example (R0 < 1 Case)

▶ According to the parameters given in Table 8.1, we have

R0 = 0.31353151869 < 1 and E0 = (8.33055648117, 0).

▶ In Figures below, a comparison of numerical solutions obtained from the
Euler, RK4, and the proposed NSFD schemes for the Hepatitis B model is
provided.

▶ The initial conditions are chosen as S(0) = 100, I (0) = 40, and the time
step size h = 4.

▶ The Euler and RK4 schemes lead to negative populations and solutions
do not converge to the equilibrium point.

▶ However, the proposed NSFD scheme does not suffer from these issues
and provides consistent results.

▶ In Figures below, the NSFD scheme is simulated for different time step
sizes, showing consistent results.
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Figure 8.1: Comparison of numerical solutions obtained from Euler and
NSFD schemes.
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Figure 8.2: Comparison of numerical solutions obtained from Euler and
NSFD schemes.
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Figure 8.3: Comparison of numerical solutions obtained from Euler and
NSFD schemes.
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Figure 8.4: Comparison of numerical solutions obtained from Euler and
NSFD schemes.
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Example (Case of R0 > 1)

▶ Here, unlike the previous example, β = 2 is chosen. All other parameter
values remain the same.

▶ In this case,

R0 = 2.09021012464 > 1 and E∗ = (1.11294571815, 0.41653942114).

▶ Figures given below shows the simulation of the global asymptotic
stability of E∗ in the S − I phase plane.

▶ Here, the NSFD scheme is used for h = 0.08.

▶ Given figures presents a simulation showing the effect of the vaccination
rate p on susceptible and infected populations.

▶ Figures, also simulate the effect of parameters α1 and α2 on susceptible
and infected populations, respectively.
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Figure 8.5: Global asymptotic stability of E∗ with the NSFD scheme for
h = 0.08.
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Figure 8.6: The effect of vaccination rate p on susceptibleindividuals.
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Figure 8.7: The effect of vaccination rate p on infected individuals.
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Figure 8.8: The effect of α1 on susceptible individuals.
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Figure 8.9: The effect of α1 on infected individuals.
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Figure 8.10: The effect of α2 on susceptible individuals.
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Figure 8.11: The effect of α2 on infected individuals.
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Obtained Results and Novelty in the Literature

▶ The obtained results provide important insights into reducing
the spread of Hepatitis B.

▶ It can be said that the disease will be eradicated as long as the
R0 threshold is below 1.

▶ Measures should be taken to reduce the transmission rate for
this purpose.

▶ The most important way to achieve this is to increase
vaccination programs and raise awareness among individuals to
take preventive measures against the spread of the disease.
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▶ Additionally, maintaining the birth rate within a certain range
in the population will also be effective in reducing this
threshold below 1.

▶ The accuracy of these predictions has been supported by
numerical simulations.

▶ While there are models for Hepatitis B considering vaccination
and different incidence rates in the literature, there is no
model including both vaccination and Beddington-DeAngelis
incidence rate.

▶ In this study, a more general model than those given in the
literature has been considered, and both continuous and
discrete structures have been investigated.
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▶ Unlike classical methods in the literature, an NSFD approach
has been used for discretization.

▶ It has been shown that the proposed discrete scheme provides
dynamically consistent results with the continuous model.

▶ Therefore, the application of a discretization method that
provides more successful results than classical methods has
been presented.

▶ The advantages of this approach have been validated through
numerical simulations.

Conjecture. The DFE point E 0 of the discrete HBV model (8.4) is
GAS if R0 < 1, and the EE point E ∗ is GAS if R0 > 1, for all
time-step sizes h.
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