This course will cover the following areas:
- Introduction to convex sets, quadratic and convex programming.
- Interior point method, Minkowski theorem, Linear Programming Optimization
- Unconstrained methods: optimality conditions, descent algorithms and convergence theorems.
- Constrained methods: Lagrange multipliers, Karush-Kuhn-Tucker conditions, Fritz John conditions, active set, penalty and interior point methods.
- Evolutionary Algorithms (Genetic and Differential Algorithms) for unconstrained optimization.